

SEMINOLE COUNTY Annual Drinking Water Quality Report 23

Seminole County Utilities Department is pleased to present you with the 2023 Annual Drinking Water Quality Report. This report is designed to inform you about the quality water and services that we deliver to you every day. These results did not happen without the commitment and dedication of our team of licensed water operators whose goal is and always has been to provide to you a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are proud to share this report, which is based on water quality testing through December 2023; you will find that we supply water that meets or exceeds all federal and state water quality regulations.

In an effort to reduce paper consumption and minimize the impact on our environment, we offer Our Water Quality Report electronically to all our customers. This report is divided into a service area map and 11 individual drinking water service area water quality reports. To determine your drinking water service area, please utilize the report's service area map and find the vicinity of your address; use the color-coded legend to determine your service area and go directly to that part of the report. Or feel free to peruse the water quality data for all drinking water service areas served by Seminole County. Seminole County residents are highly encouraged to register for emergency alerts through Alert Seminole by going to <u>www.alertseminole.org</u>. Residents can sign up to receive emergency alerts via text, email, or voice call about a variety of potential public safety and environmental hazards such as Boil Water Notices.

If you would like a printed copy of this report mailed to your address, please contact Utilities Department Customer Service office at 407-665-2110 or email at <u>DrinkingWaterInfo@seminolecountyfl.gov</u> to request your copy.

Sincerely,

Willing Edward

Johnny Edwards, P.E. Interim Director Seminole County Utilities Department

Map of Water Service Areas

Drinking Water Quality Report-Apple Valley Service Area 2023

Back to Service Area Map

We are pleased to present you this year's Annual Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. The Floridan Aquifer is the water source for the Apple Valley Service Area (PWS #3590039) which is obtained from ground water wells, aerated to remove hydrogen sulfide, chlorinated for disinfection, fluoridated for dental purposes and orthophosphate is added for corrosion control. If you have any questions about this report or concerning your water utility, please contact Seminole County Utilities Department at 407-665-2110.

Seminole County Utilities Department routinely monitors for contaminants in your drinking water according to Federal and State laws, rules, and regulations. Except where indicated otherwise, this

report is based on the results of our monitoring for the period of January 1 to December 31, 2023. Data obtained before January 1, 2023 and presented in this report are from the most recent testing done in accordance with the laws, rules, and regulations.

Source Water Assessment Plan

In 2023, the Department of Environmental Protection performed a Source Water Assessment on the City of Altamonte Springs, PWS #3590026, from whom we purchase your drinking water. The assessment was conducted to provide information about any potential sources of contamination in the vicinity of their wells. There are five (5) potential sources of contamination identified for this system with low susceptibility levels. The assessment results are available on the FDEP Source Water Assessment and Protection Program website at <u>SWAPP (state.fl.us)</u>.

EPA Would Like You to Know

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- (A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- (B) *Inorganic contaminants*, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- (C) *Pesticides and herbicides,* which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- (D) *Organic chemical contaminants,* including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
- (E) Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities

In order to ensure that tap water is safe to drink, the EPA prescribes regulations, which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Seminole County Utilities Department is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

SEMIN

EVEN HOUSE #'S THURSDAY AND SUNDAY ODD HOUSE #'S WEDNESDAY AND SATURDAY NON-RESIDENTIAL TUESDAY AND FRIDAY RECLAIM CUSTOMERS TWO DAYS PER WEEK

Terms and Abbreviations

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

"ND" means not detected and indicates that the substance was not found by laboratory analysis.

Parts per billion (ppb) or Micrograms per liter (μ g/I): one part by weight of analyte to 1 billion parts by weight of the water sample. Parts per million (ppm) or Milligrams per liter (mg/I): one part by weight of analyte to 1 million parts by weight of the water sample. Picocurie per liter (pCi/L): measure of the radioactivity in water.

Apple Valley Service Area WATER QUALITY RESULTS

Apple Valley Consecutive Water System - PWS ID# 3590039

taminants are the highest av Lion Level Detected 0.0086 0.62 0.001	Range of Results 0.0058 - 0.0086 0.61 - 0.62	MCLG 2 4	e highest detecte MCL 2 4	d level at any sampling point, depending on the sampling frequency. Likely Source of Contamination Discharge of drilling wastes; discharge from metal refineries erosion of natural deposits Erosion of natural deposits; discharge from fertilizer and aluminum factories. Water additive which promotes strong
0.0086	0.0058 - 0.0086	2	2	Discharge of drilling wastes; discharge from metal refineries erosion of natural deposits Erosion of natural deposits; discharge from fertilizer and
0.62	0.61 - 0.62			erosion of natural deposits Erosion of natural deposits; discharge from fertilizer and
		4	4	
0.001				teeth when at optimum level of 0.7 ppm
	0.00022 - 0.0010	0	0.015	Residue from man-made pollution such as autoemissions ar paint; lead pipe, casing, and solder
0.0030	0.0024 - 0.0030	N/A	0.1	Pollution from mining and refining operations. Natural occurance in soil.
14.5	9.1 - 14.6	N/A	160	Salt water intrusion, leaching from soil
	Volatile Organic O	ontaminan	ts	
contaminants are the highes	taverage at any of the sa	mpling points o	r the highest dete	cted level at any sampling point, depending on the sampling frequence
tion Level Detected	Range of Results	MCLG	MCL	Likely Source of Contamination
0.82	ND - 0.82	0	5	Discharge from pharmaceutical and chemical factories
Stage	1 Disinfectants/Disi	nfection By-R	roducts	
i nual average (RAA), comput			amples collecter	d. The range of results is the range of results of all individual samples
tion Level Detected	Range of Results	MCLG or MRDLG	MCL or MRDL	Likely Source of Contamination
1.31	0.44 - 1.72	MRDLG = 4	MRDL = 4.0	Wateradditive used to control microbes
		nfection By	-Products	
				Results is the range of individual sample results (lowest to highest) f
es (TTHM), the level detected	is the highest locational	running annual	avera ge (LR.AA). I	Range of Results Is the range of Individaul samples results (lowest to
tion Level Detected	Range of Results	MCLG or MRDLG	MCL or MRDL	Likely Source of Contamination
	16.20 - 18.92	NA	MCL= 60	By-product of drinking water disinfection
18.92* 29.7**	16.20 - 18.92 10.8 - 36.5			
29.7** 36.36*	10.8 - 36.5 33.34 - 36.36	NA	MCL= 80	By-product of drinking water disinfection
29.7**	10.8 - 36.5	NA		By-product of drinking water disinfection
	contaminants are the highes L Level Detected 0.82 Stage nrual average (RAA), comput L L 1.31 1.10 Stage 2 (TTHM), the level detected is es (TTHM), the level detected L	Volatile Organic C contaminants are the highest average at any of the sa L tion Level Detected Range of Results 0.82 ND - 0.82 Stage 1 Disinfectants/Disinanual average (RAA), computed quarterly, of monthly collected during the	Volatile Organic Contaminant contaminants are the highest average at any of the sampling points of L Level Detected Range of Results MCLG 0 0.82 ND - 0.82 0 Stage 1 Disinfectants/Disinfection By-P nnual average (RAA), computed quarterly, of monthly averages of all so collected during the past year. L too MCLG or MRDLG 1.31 0.44 - 1.72 MRDLG or MRDLG 1.10 0.5 - 1.10 MRDLG = 4 Stage 2 Disinfectants/Disinfection By-P 1.110 0.5 - 1.10 MRDLG or MRDLG 1.120 0.5 - 1.10 MRDLG are monitoring the past year. L Ling 0.5 - 1.10 Stage 2 Disinfectants/Disinfection By-P MRDLG at any sampling and mRDLG or MRDLG NUL MIL of the level Detected Range of Results MIL of the level detected is the highest detected level at any sampling annual high est for all monitoring locations. L MIL of the level Detected Range of Results	Volatile Organic Contaminants contaminants are the highest average at any of the sampling points or the highest detect L L MCLG MCL 0 82 ND - 0.82 0 5 Stage 1 Disinfectants/Disinfection By-Products nnual average (RAA), computed quarterly, of monthly averages of all samples collected collected during the past year. L Evel Detected Range of Results MCLG or MRDLG N 1.31 0.44 - 1.72 MRDLG at MRDL = 4.0 1.10 0.5 - 1.10 MRDL = 4.0 Stage 2 Disinfectants/Disinfection By-Products N 1.31 0.44 - 1.72 MRDL = 4 N 1.31 0.44 - 1.72 MRDL = 4.0 Stage 2 Disinfectants/Disinfection By-Products Stage 2 Disinfectants/Disinfection By-Products (TTHM), the level detected is the highest detected level at any sampling point. Range of all monitoring loca tions. Image of the substore at onal running annual average (LRAA). Inghest for all monitoring loca tions. L tion Level Detected Range of Results MCLG or MRDL

Drinking Water Quality Report-Black Hammock Service Area 2023

We are pleased to present you this year's Annual Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. The Floridan Aquifer is the water source for the Black Hammock Consecutive Service Area (PWS #3594186) which is obtained from ground water wells, Carbon Dioxide is used to adjust the pH, sent thru aeration towers to remove hydrogen sulfide, chloraminated for disinfection, and then fluoridated for dental health purposes. If you have any questions about this report or concerning your water utility, please contact Seminole County Utilities Department at 407-665-2110.

Seminole County Utilities Department routinely monitors for contaminants in your drinking water according to Federal and State laws, rules, and regulations. Except where indicated otherwise, this report is based on the results of our monitoring for the period of January 1 to December 31, 2023. Data obtained before January 1, 2023 and presented in this report are from the most recent testing done in accordance with the laws, rules, and regulations

Source Water Assessment Plan

In 2023, the Department of Environmental Protection performed a Source Water Assessment on City of Oviedo, PWS #3590970, from whom we purchase your drinking water. The assessment was conducted to provide information about any potential sources of contamination in the vicinity of their wells. There are six (6) potential sources of contamination identified for this system with low to moderate susceptibility levels. The assessment results are available on the FDEP Source Water Assessment and Protection Program website at www.dep.state.fl.us/swapp.

EPA Would Like You to Know

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- (A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- (B) *Inorganic contaminants,* such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- (C) *Pesticides and herbicides,* which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- (D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
- (E) Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the EPA prescribes regulations, which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/ AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Seminole County Utilities Department is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

WATERING RESTRICTION SCHEDULE EVEN HOUSE #'S THURSDAY AND SUNDAY ODD HOUSE #'S WEDNESDAY AND SATURDAY NON-RESIDENTIAL TUESDAY AND FRIDAY RECLAIM CUSTOMERS TWO DAYS PER WEEK

Terms and Abbreviations

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

"ND" means not detected and indicates that the substance was not found by laboratory analysis.

Parts per billion (ppb) or Micrograms per liter (μg/l): one part by weight of analyte to 1 billion parts by weight of the water sample. **Parts per million (ppm) or Milligrams per liter (mg/l):** one part by weight of analyte to 1 million parts by weight of the water sample. **Picocurie per liter (pCi/L):** measure of the radioactivity in water.

Black Hammock Service Area WATER QUALITY RESULTS

Black Hammock Consecutive Water System (PWS ID# 3594186)

Radioactive Contaminant

				Radioactive Contai	minants		
Results in the Level	Detected column for	radioactive contamin	ants are the highest ave	nge at any of the samplin	g points or the hig	fiest detected leve	I at any sampling point, depending on the sampling frequency.
Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	MCL Violation Y/N	Level Detected	Range of Results	MCLG	MC	likely Source of Contamination
Radium 226 (pG/L) City of Oviedo	7/23	N	1.3	1.3	0	5	Erosion of natural deposits
				Inorganic Contam	iinan ts		
Results in the Level	Detected column for	inorganic contamina	nts are the highest avera	ge at any of the sampling	points or the high	est detected level	at any sampling point, depending on the sampling frequency.
Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	MCLViolation Y/N	Level Detected	Range of Results	MCLG	MQ	Likely Source of Contamination
Barium (ppm) City of Ovieda	07/23	N	0.11	0.11	2	2	Discharge of drilling wastes; discharge from metal refineri erosion of natural deposits
Fluoride (ppm) City of Oviedo	07/23	N	0.69	0.69	4	4	Erosion of natural deposits; discharge from fertilizer and aluminum factories. Water additive which promotes stro teeth when at optimum level of 0.7 ppm
Nitrite (as Nitrogen ppm) City of Ovledo	07/23	N	0.069	0.069	1	1	Runofffrom fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Nitrate (as Nitrogen ppm) City of Oviedo	07/23	N	0.11	0.11	10	10	Runofffrom fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
			Stage 1 C)isinfectant/Disinfe	ction By-Pro	duct	
or chlora mine s, the level de te	cted is the highest	trunning annual a w	ena ge (RAA), complute d	quarterity, of monthly av collected during the p		mples collected.	The range of results is the range of results of all individual samp
Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	MCL Violation Y/N	Level Detected	Range of Results	MCLG or MRDLG	MCL or MRDL	likely Source of Contamination
Chloramines (ppm) Seminole County City of Ovledo	01/23 - 12/23 01/23 - 12/23	N	2.55	0.93 - 2.82	MRDLG = 4	MRDL=4.0	Water additive used to control microbes
			Stage 2 Di	sinfectants/Disinfe	ction By-Pro	ducts	
or Haloacetic Acids (HAAS) or T	o tal Triha lome tha r	ies (TTHM), the leve	I detected is the high	est detected level at any	y sampling poin	L Range of Resul	ts is the nange of individual sample results (fowest to highest) for
Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	MCLViolation Y/N	Level Detected	monitoring locati	MCLG or MRDLG	MCLor MRDL	Likely Source of Contamination
Haloacetic Acids (five) (HAA5) (ppb) Seminole County City of Ovied o	08/23 05/23	N	16.23 23.91	16.23 18.92 - 23.91	NA	MCL = 60	By-product of drinking water disinfection
Total Trihalomethanes (TTHM) (ppb) Seminole County City of Oviedo	08/23 05/23	N	21.62 19.72	21.62 17.41 - 19.72	NA	MQ. = 80	By-product of drinking water disinfection
	6 - Xa - S		L	ead and Copper (Ta	ap Water)		
Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	ALViolation Y/N	90th Percentile Result	Number of sampling sites exceeding the AL	MCLG	AL	Likely Source of Contamination
Copper (tap water) (ppm) Seminole County	06/21	N	0.31	0	1.3	13	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Lead (tap water) (ppb) Seminole County	06/21	N	5.6	0	0	15	Corrosion of household plumbing systems, erosion of natural deposits

Drinking Water Quality Report-Chase Groves Consecutive Service Area 2023

We are pleased to present you this year's Annual Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. The Floridan Aquifer is the water source for the Chase Groves Consecutive Service Area (PWS #3594214) which is obtained from ground water wells and is chlorinated for disinfection purposes and then fluoridated for dental health purposes. Polyphosphate is added for corrosion control. If you have any questions about this report or concerning your water utility, please contact Seminole County Utilities Department at 407-665-2110.

Seminole County Utilities Department routinely monitors for contaminants in your drinking water according to Federal and State laws, rules, and regulations. Except where indicated otherwise, this report is based on the results of our monitoring for the period of January 1 to December 31, 2023.

Data obtained before January 1, 2023 and presented in this report are from the most recent testing done in accordance with the laws, rules, and regulations.

Source Water Assessment Plan

In 2023, the Department of Environmental Protection performed a Source Water Assessment on City of Sanford, PSW #3590205, from whom we purchase your drinking water. The assessment was conducted to provide information about any potential sources of contamination in the vicinity of their wells. There are eleven (11) potential sources of contamination identified for this system with low to moderate susceptibility levels. The assessment results are available on the FDEP Source Water Assessment and Protection Program website at www.dep.state.fl.us/swapp.

EPA Would Like You to Know

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- (A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- (B) *Inorganic contaminants,* such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- (C) *Pesticides and herbicides,* which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- (D) *Organic chemical contaminants,* including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
- (E) Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the EPA prescribes regulations, which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

ome people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/ AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Seminole County Utilities Department is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

SEMIN

EVEN HOUSE #'S THURSDAY AND SUNDAY ODD HOUSE #'S WEDNESDAY AND SATURDAY NON-RESIDENTIAL TUESDAY AND FRIDAY RECLAIM CUSTOMERS TWO DAYS PER WEEK

Terms and Abbreviations

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

"ND" means not detected and indicates that the substance was not found by laboratory analysis.

Parts per billion (ppb) or Micrograms per liter (μg/l): one part by weight of analyte to 1 billion parts by weight of the water sample. **Parts per million (ppm) or Milligrams per liter (mg/l):** one part by weight of analyte to 1 million parts by weight of the water sample. **Picocurie per liter (pCi/L):** measure of the radioactivity in water.

Chase Groves Service Area

			COME STREET, COMPANY	UALTI		Concernant and the second	
	C	nase Grov		utive Water 8		PWSIL	₩ 35942 1 4
and a local standard and a	d down for the	1		Radioactive Contan	and the second second	4	level at any sampling point, depending on the sampling frequency.
MARGANESS - SHARES - SAULT				to at any of the semping	points or the n		even at any samping point, depending on the sampling requerty.
Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	MCL Violation Y/N	Level Detected	Range of Results	MCLG	MCL	Likely Source of Contamination
Radium 226 + 228 or combined radium (pCi/L) City of Sanford	08/23	N	1.84	ND - 1.84	o	5	Erosion of natural deposits
				Inorganic Contam	inants		
Results in the Level Detec	ted column for inorg	aris contaminants a	in the high set average	e at any of the sampling	points or the hij	ghest detected is	evel at any sampling point, depending on the sampling frequency.
Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	MCLV Iolation Y/N	Level Detected	Range of Results	MCLG	MCL	Likely Source of Contamination
Barlum (ppm)	07/23	N	0.02.2	0.011 - 0.022	2	2	Discharge of drilling wastes; discharge from metal refineri erosion of natural deposits
City of Sanford Fluoride (ppm) City of Sanford	07/23	N	0.74	0.69 - 0.74	4	4	Erosion of natural deposits; discharge from fertilizer an aluminum factories. Water additive which promotes stro
itrate (as Nitrogen) (ppm)	07/23	N	0.26	0.24 - 0.26	10	10	teeth when at optimum level of 0.7 ppm Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
City of Sanford Sodium (ppm)	07/23	N	38.3	20.6 - 38.3	N/A	160	Salt water intrusion, leaching from soil
City of Sanfard	0,75	24		2010/2010		1913	Sale Water Historica, Folding Formatin
r chlorine. the level detected	is the highest runnic	na annual avarage (sinfect an ts/Disinfe			nee of results is the range of results of all individual samples colle c
				during the past ye	w r .	Construction (Construction	nge of results is the range of results of all individual samples colle c
Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	MCL Violation Y/N	Level Detected	Range of Results	MCLG or MRDLG	MCL or MRDL	Likely Source of Contamination
Chilorine (ppm) Seminale Caunty City of Sanford	01/23-12/23 01/23-12/23	N	1.61 1.3	0.59 × 2.19 0.3 × 2.6	MRDLG = 4	MRDL = 4.0	Water additive used to control microbes
and of condexe	0413-1415		THE REAL PROPERTY AND A	sinfect ants/Disinfe	ction By-Proc	ducts	
er Haleacetic Acids (HAAS) or	Total Trihalomethan	es (TTHM), the leve	l detected is the highs	at locational running an location like		AA). Hange of He	suks is the range of individual samples results (lowest to highest)
Contaminant an <mark>d Unit of</mark> Measurement	Date of Sampling (mo/yr)	MCLViolation Y/N	Level Detected	Range of Results	MCLG or MRDLG	MCLor MRDL	Likely Source of Contamination
Haloacetic Acids (five) (HAAS) (ppb) Seminole County	01/23-12/23	N	17.58	10.6 - 19.92	NA	MCL = 60	By-product of drinking water disinfection
City of Sanford Total Tribal omethanes	01/23 - 12/23	N	21.75	7.83 - 39.91			23-00 m of the second sec
(TT HM) (ppb) Seminale County	01/23 - 12/23	N	58.13	30.57 - 82.94	NA	MCL = 80	By-product of drinking water disinfection
City of Sonford wo (2) samples during 2022 h	01/23 - 12/23 ed a Tih Mire sult of a	N 82.94 and 81.97 pp	66.58 Ib respectively, which	41.40 - 54.12 exceeds the MCL of 80 p	pb. However, ti	he system did no	t incur an MCL violation, because all annual average results at all si vith their Ever, kidneys, or central nervous systems, and may have
vere at or below the MCL So	me people who drini	water containing t	trihalome thane s in ex-	cess of MCL over many y increased risk of gettin	ears may experi g can sur.	ience problems v	with their liver, kidneys, or central nervous systems, and may have
			Le	ead and Copper (Ta	p Water)		
Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	ALViolation Y/N	90th Percentil e Result	Number of sampling sites exceeding the AL	MCLG	AL	Likely Source of Contamination
Copper (tap water) (ppm) Seminoir Gounty	06/23	N	0.052	o	13	1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
e City of Serford (our wholes water of UC and whether or publish the analytical results	ale water provider) F not these contamin of our UC monitoring	nas been monitorin ants need to be reg in our annual wate	g for unregulated cont rulated.At present, no	lated Contaminant N iaminants (UC) as part or inhealth standards (for ei i would like more inform Water Hotine at 000014	festudy to help cample, maximu	the U.S. Environ m conteminent	mental Protection Agency (B*A) determine the occurrence in drivi e with have been established for UC. However, we are required to Contaminants Monitoring Hule (UCMR), please call the Sefe Driviti
Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	Level Detected (average)	Range of Results	MCLG	Proposed MCL		Likely Source of Contamination
Perfluorobutanesul fonic acid (PFBS) (ppt)	04/23 10/23	1.85	1.10 - 3.60	NA	NA	Water-resist	tant or stain-resistant coatings on fabrics, carpets, and pap
Perfluoroheptanoic add (PFHpA) (ppt)	04/23-10/23	1.3	1.10 - 1.70	NA	NA	Stain- and gr	ease-proof coatings on food packaging, couches and carpe
Perfluorohexanesulfonic acid (PFHxS) (ppt)	04/23-10/23	2.63	2.20 - 3.10	NA	NA		Firefighting Foam
Perfluorohexanoic acid (PFHxA) (ppt)	04/23 - 10/23	2.15	1.50 - 3.00	NA	NA		Degradation Product of PFHxS
Perfluorooctanesulfonic add (PFOS) (ppt)	04/23-10/23	2.73	1.70 - 4.70	0.00	4.0		Fabric Protection, Firefighting Foam
Perfluorooctanoic add (PFOA) (ppt)	04/23 - 10/23	2.43	1.80 - 3.60	00.0	4.0		Nonstlick Surfaces
1H,1H, 2H, 2H perfluorooctane sulfonic acid (6:2FTS) (ppt)	04/23-10/23	2.70	2.70 - 2.70	NA	NA	Elec	ctroplating industry or aqueous film forming foams
Perfluorobutanoic add or Perfluorobutyrate Acid (PFBA) (ppt)	04/23-10/23	2.15	2.10 - 2.20	NA	NA		Photographic Film
Perfluoropentanoic add	04/23-10/23	3.08	2.00 - 4.90	NA	NA	Stain- and gr	ease proof coatings on food packaging, couches and carpe
(PFPeA) (ppt)	Contraction of the State	2523/22	2430.3528.32	ormation visit https:/	Autor and an	a fatar	

Drinking Water Quality Report-Druid Hills Consecutive Service Area 2023

We are pleased to present you this year's Annual Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. The Floridan Aquifer is the water source for the Druid Hills Service Area (PWS #3590111) which is obtained from ground water wells, aerated to remove hydrogen sulfide, chlorinated for disinfection, fluoridated for dental purposes and orthophosphate is added for corrosion control. If you have any questions about this report or concerning your water utility, please contact Seminole County Utilities Department at 407-665-2110.

Seminole County Utilities Department routinely monitors for contaminants in your drinking water according to Federal and State laws, rules, and regulations. Except where indicated otherwise, this report is based on the results of our monitoring for the period of January 1 to December 31, 2023. Data obtained before January 1, 2023 and presented in this report are from the most recent testing done in accordance with the laws, rules, and regulations.

Source Water Assessment Plans

In 2023, the Department of Environmental Protection performed a Source Water Assessment on the City of Altamonte Springs, PWS #3590026, from whom we purchase your drinking water. The assessment was conducted to provide information about any potential sources of contamination in the vicinity of their wells. There are five (5) potential sources of contamination identified for this system with low susceptibility levels. The assessment results are available on the FDEP Source Water Assessment and Protection Program website at www.dep.state.fl.us/swapp.

EPA Would Like You to Know

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- (A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- (B) *Inorganic contaminants,* such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- (C) *Pesticides and herbicides,* which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- (D) *Organic chemical contaminants,* including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
- (E) Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the EPA prescribes regulations, which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/ AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Seminole County Utilities Department is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

WATERING RESTRICTION SCHEDULE EVEN HOUSE #'S THURSDAY AND SUNDAY ODD HOUSE #'S WEDNESDAY AND SATURDAY NON-RESIDENTIAL TUESDAY AND FRIDAY RECLAIM CUSTOMERS TWO DAYS PER WEEK

Terms and Abbreviations

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

"ND" means not detected and indicates that the substance was not found by laboratory analysis.

Parts per billion (ppb) or Micrograms per liter (μg/l): one part by weight of analyte to 1 billion parts by weight of the water sample. Parts per million (ppm) or Milligrams per liter (mg/l): one part by weight of analyte to 1 million parts by weight of the water sample. Picocurie per liter (pCi/L): measure of the radioactivity in water.

Druid Hills Service Area WATER QUALITY RESULTS

Druid Hills Water System - PWS ID# 3590111

				la sur de la			
				Inorganic Cont	taminants		
esults in the Level Detected co Contaminant and Unit of Measurement	lumn for inorgan Date of Sampling (mo/yr)	ic contaminant MCL Violation Y/N	s a rethe highest av	erage at a ny of the samp Range of Results	oling points or the MCLG	he highest detect	ed level at any sampling point, depending on the sampling freque
Barium (ppm) Gty of Atamonte Springs	05/23	N	0.0086	0.0058 - 0.0086	2	2	Discharge of drilling wastes; discharge from metal refiner erosion of natural deposits
Fluoride (ppm) Gty of Altamonte Springs	05/23	N	0.62	0.61 - 0.62	4	4	Erosion of natural deposits; discharge from fertilizer an aluminum factories. Water additive which promotes stro teeth when at optimum level of 0.7 ppm
Lead (point of entry) (ppb) Gty of Altamonte Springs	05/23	N	0.001	0.00022 - 0.0010	0	0.015	Residue from man-made pollution such as auto emission and paint; lead pipe, casing, and solder
Nickel (ppb) Gty of Altamonte Springs	05/23	N	0.0030	0.0024 - 0.0030	N/A	0.1	Pollution from mining and refining operations. Natural occurance in soil.
Sodium (ppm) Gty of Atamonte Springs	05/23	N	14.6	9.1 - 14.6	N/A	160	Salt water intrusion, leaching from soil
				Volatile Organic (Contaminan	ts	
Results in the Level Detected	column for volati	le organic cont	aminants are the hi	ghestaverage at any of frequen		ints or the highe	st detected level at any sampling point, depending on the samplin
Contaminan t and Unit of Measurement	Date of Sampling (mo/yr)	MCL Violation Y/N	Level Detected	Range of Results	MCLG	MCL	Likely Source of Contamination
Dichloromethane (ppb) Gty of Altomorte Springs	05/23-07/23	N	0.82	N D - 0.82	0	5	Discharge from pharmaceutical and chemical factories
			Stage 1	L Disinfectants/Disi	infection By-	Products	
For chlorine, the level detec Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	MCL	l average (RAA), con Level Detected	nputed quarterly, of mor samples collected duri Range of Results			lected. The range of results is the range of results of all individual
Chlorine (ppm) Seminole County Gty of Altamonte Springs	01/23-12/23 01/23-12/23	N N	1.51 1.10	0.59 - 1.90 0.5 - 1.10	M RDLG = 4	MRDL = 4.0	Water additive used to control microbes
			Stage	2 Disinfectants/Disi	infection By-	Products	
				highest) for all monit	oring locations.		nge of Results is the range of individual sample results (lowest to). Range of Results is the range of individual samples results (low
Contaminan t and Unit of Measurement	Date of Sampling (mo/yr)	MCL Violation Y/N	Level Detected	to highest for all moni	MCLG or MRDLG	MCL or MRDL	Likely Source of Contamination
Haloacetic Acids (five) Seminale Gaunty City of Altamonte Springs	07/23 01/23 - 10/23	N N	28.42* 29.7**	25.82 - 28.42 10.8 - 36.5	NA	MCL = 60	By-product of drinking water disinfection
Total Trihalomethanes Seminale Gaunty Gty of Altamonte Springs	07/23 01/23 - 10/23	N N	49.84* 61.1**	44,46 - 49,84 18,8 - 81.0	NA	MCL = 80	By-product of drinking water disinfection
			C	Lead and Copper	(Tap Water)		
Contaminan t and Unit of Measurement	Date of Sampling (mo/yr)	ALViolation Y/N	90th Percentile Result	Number of sampling sites exceeding the AL	MCLG	AL	Likely Source of Contamination
Copper (tap water) (ppm)	06/21	N	0.16	0	1.3	1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

Drinking Water Quality Report-Lake Brantley Consecutive Service Area 2023

We are pleased to present you this year's Annual Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. The Floridan Aquifer is the water source for the Lake Brantley Consecutive Service Area (PWS #3590685) which is obtained from ground water wells, aerated to remove hydrogen sulfide, chlorinated for disinfection, orthopolyphosphate is added for corrosion control. If you have any questions about this report or concerning your water utility, please contact Seminole County Utilities Department at 407-665-2110.

Back to

Service Area Map

Seminole County Utilities Department routinely monitors for contaminants in your drinking water according to Federal and State laws, rules, and regulations. Except where indicated otherwise, this report is based on the results of our monitoring for the period of January 1 to December 31, 2023.

Data obtained before January 1, 2023 and presented in this report are from the most recent testing done in accordance with the laws, rules, and regulations.

Source Water Assessment Plan

In 2023, the Department of Environmental Protection performed a Source Water Assessment of the Sunshine Water Services, (Sanlando Utilities), PWS #3591121, from whom we purchase your drinking water. The assessment was conducted to provide information about any potential sources of contamination in the vicinity of their wells. There are six (6) potential sources of contamination ranging from low to moderate susceptibility levels. The assessment results are available on the FDEP Source Water Assessment and Protection Program website at www.dep.state.fl.us/swapp.

EPA Would Like You to Know

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- (A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- (B) *Inorganic contaminants,* such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- (C) *Pesticides and herbicides,* which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- (D) *Organic chemical contaminants,* including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
- (E) Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the EPA prescribes regulations, which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Seminole County Utilities Department is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

ODD HOUSE #'S WEDNESDAY AND SATURDAY NON-RESIDENTIAL TUESDAY AND FRIDAY RECLAIM CUSTOMERS TWO DAYS PER WEEK

Terms and Abbreviations

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

"ND" means not detected and indicates that the substance was not found by laboratory analysis.

Parts per billion (ppb) or Micrograms per liter (μg/l): one part by weight of analyte to 1 billion parts by weight of the water sample. **Parts per million (ppm) or Milligrams per liter (mg/l):** one part by weight of analyte to 1 million parts by weight of the water sample. **Picocurie per liter (pCi/L):** measure of the radioactivity in water.

Lake Brantley Service Area WATER QUALITY RESULTS

Lake Brantley Consecutive Water System - PWS ID# 3590685

				Inorganic Contar	ninants		
Results in the Level Detecte	nd column for inco	rganic contaminants	are the highest ever	ege at any of the samplin	g points or the l	righest detected	level at any sampling point, depending on the sampling frequency.
Barlum (ppm) Sunshine Water Services	09/23	N	0.02	0.0055 - 0.02	2	2	Discharge of drilling wastes; discharge from metal refinerie erosion of natural deposits
Fluoride (ppm)	09/23	N	0.24	0.15 - 0.24	4	4	Erosion of natural deposits; discharge from fertilizer and aluminum factories. Water additive which promotes stror teeth when at the optimum level of 0.7 ppm
Sodium (ppm) Senstine Water Services	09/23	N	25	13 - 25	N/A	160	Salt water intrusion, leaching from soil
Mercury (Inorganic)(ppb) Synshine Water Services	09/23	N	0.052	ND - 0.052	2	2	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland
iltrate (as Nitrogen) (ppm) Sunshine Water Services	01/23 -09/23	N	0.12	N D - 0.12	10	10	Runoff from fertilizer use; leadhing from septic tanks, sewage; erosion of natural deposits
Suntrane Water Services			Stage 1 [Disinfectants/Disinf	ection By-Pro	ducts	
For chlorine, the level deter	tted is the highes	trunning annual ave	erage (RAA), compute	d quarterly, of monthly collected during the		mples collect ed.	The range of results is the range of results of all individual samples
Contaminant and Unit of Measurement	Date of Sampling (mo/vr)	MCL Violation Y/N	Level Detected	Range of Results	MCLG or MRDLG	MCL or MRDL	Likely Source of Contamination
Chlorine (ppm) Seminale County	01/23 - 12/23	N	1.62	0.39 - 1.74	MRDLG = 4	MRDL = 4.0	Water additive used to control microbes
Sunshine Water Services	01/23 - 12/23	N	2.0	ND-3.4	1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 19	ONE SERVICE STR	
or Helosottic Acids (HAA5) or Contaminant and Unit of Measurement	Date of Sampling	MCLViolation Y/N		Dis in fectants/Dis inf ighest detected level at monitoring locat Range of Results	any sampling po		Its is the range of individual sample results (lowest to highest) for Likely Source of Contamination
Haloa cetic Acids (five) (HAAS) (ppb) Seminole County Sunshine Water Services	(mq/yr) 07/23 08/23	N	6.57 20.19	6.57 8.46 - 20.19	N/A	MCL = 60	By-product of drinking water disinfection
Total Trihalomethanes (TTHM) (ppb) Seminole County Sunshine Water Services	07/23 08/23	NN	15.05 26.47	15.05 19.28 - 26.47	N/A	MCL = 80	By-product of drinking water disinfection
				Lead and Copper (T	ap Water)		
Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	AL Violation Y/N	90th Percentile Result	Number of sampling sites exceeding the AL	MCLG	AL	Likely Source of Contamination
Copper (tap water) (ppm) Seminole Countr	06/21	N	0.049	0	13	1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
			The Fifth Unreg	ulated Contaminant	Monitoring R	de (UCMRS)	nata a appearação a contra como prese tantes
manufacturing of products res the blood of humans and ani public health by proposing at	istant to water, g imak all over the National Primary	rease or stains indo world. The Environ Drinking Water Heg	s efforts to conduct a uding firefighting foar mental Protection Age ulation (NPDWR) to a	tatewide drinking water rs, cleaners, cosmetics, p rncy (EPA) has establishe stablish legally enforced	testing for Per- eints, adhesives d Health Adviso le levels, called	and Polyfuoroal and insecticides. ry Levels (HALs) f Maximum Conta	kyl Substances (IPFAS). These man-made compounds are used in the IPFAS can migrate into the soil, water, and ais and is likely present i or GenX, IPFBS, IPFAS, and IPFOS. BNA is taking a keys taken to protect minant Levels (INELs), for six IPFAS known to occur in drinking water
indulang Pros, Pros, PINA, P	Service and the part of	en A Chemicals. EPA		afe Drinking Water Hoti			he EPA's Unregulated Contaminants Monitoring Rule (UCMR), please
Contaminant	Date of Sampling (mo/yr)	Range of Detect	Average Level	EPA HAL			
PFBS (ng/L)	11/21/23, 12/19/23	ND - 1.3	0.33	2,000			

PFBS (ng/L)	11/21/23, 12/19/23	ND - 1.3	0.33	2,000
PFHpA (ng/L)	11/21/23, 12/19/23	ND-0.97	0.07	
PFHxA (ng/L)	11/21/23, 12/19/23	ND-1.9	0.5	
PFHxS (ng/L)	11/21/23, 12/19/23	ND-2.1	0.7	
PFOA (ng/L)	11/21/23, 12/19/23	ND-2.9	0.81	0.004
PFOS (ng/L)	11/21/23, 12/19/23	ND-2.7	0.78	0.02
PFPeA (ng/L)	11/21/22	ND-2.2	0.2	

Terms and Abbreviations:

*Health Advisory Level (HAL) - To provide Americans, including the most sensitive populations, with a margin of protection from a lifetime of exposure to GenX, PFOA and PFOS from drinking water, EPA established health advisory levels.

*Ng/L – Nanograms per liter (ng/L) which equals Parts per trillion (ppt) – One part per trillion corresponds to one minute in 2,000,000 years, or a single penny in \$10,000,000,000. *ND (No Detect) - No detection means the constituent is not detectable at the minimum reporting limit.

*GenX - Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)

*PFBS - Perfluorobutanesulfonic Add

*PFOS – Perfluorooctane sul foni c Acid

*PFOA - Perfluorooctanoic Acid

*PFHpA-Perfluoroheptanoic Acid

*PFHxA – Perfluorohexanoic Acid

*PFHxS – Perfluorohexanesulfonic Acid

*PFPeA – Perf luoropentanoic Acid

For more information visit https://www.eps.apu/ofse

Drinking Water Quality Report-Meredith Manor Service Area 2023

We are pleased to present you this year's Annual Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. The Floridan Aquifer is the water source for the Meredith Manor Service Area (PWS #3590823) which is obtained from ground water wells, aerated to remove hydrogen sulfide, chlorinated for disinfection, orthopolyphosphate is added for corrosion control. If you have any questions about this report or concerning your water utility, please contact Seminole County Utilities Department at 407-665-2110.

Seminole County Utilities Department routinely monitors for contaminants in your drinking water ac-

cording to Federal and State laws, rules, and regulations. Except where indicated otherwise, this report is based on the results of our monitoring for the period of January 1 to December 31, 2023. Data obtained before January 1, 2023 and presented in this report are from the most recent testing done in accordance with the laws, rules, and regulations.

Source Water Assessment Plan

In 2023, the Department of Environmental Protection performed a Source Water Assessment of the Sunshine Water Services, (Sanlando Utilities), PWS #3591121, from whom we purchase your drinking water. The assessment was conducted to provide information about any potential sources of contamination in the vicinity of their wells. There are six (6) potential sources of contamination identified for this system from low to moderate susceptibility levels. The assessment results are available on the FDEP Source Water Assessment and Protection Program website at <u>www.dep.state.fl.us/swapp.</u>

EPA Would Like You to Know

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- (A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- (B) *Inorganic contaminants,* such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- (C) *Pesticides and herbicides,* which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- (D) *Organic chemical contaminants,* including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
- (E) Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the EPA prescribes regulations, which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/ AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Seminole County Utilities Department is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

WATERING RESTRICTION SCHEDULE EVEN HOUSE #'S THURSDAY AND SUNDAY ODD HOUSE #'S WEDNESDAY AND SATURDAY NON-RESIDENTIAL TUESDAY AND FRIDAY RECLAIM CUSTOMERS TWO DAYS PER WEEK

Terms and Abbreviations

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

"ND" means not detected and indicates that the substance was not found by laboratory analysis.

Parts per billion (ppb) or Micrograms per liter (μg/l): one part by weight of analyte to 1 billion parts by weight of the water sample. **Parts per million (ppm) or Milligrams per liter (mg/l):** one part by weight of analyte to 1 million parts by weight of the water sample. **Picocurie per liter (pCi/L):** measure of the radioactivity in water.

Meredith Manor Service Area

Meredith Manor Consecutive Water System - PWS ID# 3590823

	M	eredith Ma	anor Conse	ecutive Water	System	I-PWSI	D# 3590823
				Inorganic Contan	ninants		
Results in the Level Detect	ed column for in o	rean is contamin an ta	are the highest ever	ere at any of the samplin	e points or the l	hishest detected	level at any sampling point, depending on the sampling frequen
	ia calumin lar indi	gane contaminants	are the ingritic avera	ge at any of the samplin	g paints or the r	ngment d'etecte d	
Barlum (ppm) Sunshine Water Services	09/23	N	0.02	0.0055 - 0.02	2	2	Discharge of drilling wastes; discharge from metal refine erosion of natural deposits Erosion of natural deposits; discharge from fertilizer a
Fluoride Sunshine Water Services	09/23	N	0.24	0.15 - 0.24	4	4	aluminum factories. Water additive which promotes st teeth when at the optimum level of 0.7 ppm
Sodium (ppm) Sunshine Water Services	09/23	N	26	13 - 26	N/A	160	Salt water intrusion, leaching from soil
Mercury (Inorganic)(ppb) Sunshine Water Services	09/23	N	0.052	ND - 0.052	2	2	Erosion of natural deposits; discharge from refineries a factories; runoff from landfills; runoff from cropland
itrate (as Nitrogen) (ppm) Sunshine Water Services	01/23 -09/23	N	0.12	N D - 0.12	10	10	Runoff from fertilizer use; leadning from septic tanks sewage; erosion of natural deposits
and the second s			Stage 1	Disinfectants/Disinf	ection By-Pro	aducts	
For chlorine, the level dete	cted is the highes	trunning annual ava			overages of all sa		The range of results is the range of results of all individual sampl
Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	MCL Violation Y/N	Level Detected	Range of Results	MCLG or MRDLG	MCL or MRDL	Likely Source of Contamination
Chlorine (ppm) Seminale County	01/23 - 12/23	N	1.63	0.76 - 1.95	MRDLG = 4	MRDL = 4.0	Water additive used to control microbes
Sunshine Water Services	01/23 - 12/23	N	2.0	ND-3.4	D. D.		
				Disinfectants/Disinf		and the second	
or Heloeoit is Acids (HAAS) or	Total Trihelometh	uanes (TTHM), the le	weld stected is the hi	ghest detected level at a monitoring locat		nt.Kange of Nes	dts is the range of individual sample results (lowest to highest) f
Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	MCL Violation Y/N	Level Detected	Range of Results	MCLG or MRDLG	MCL or MRDL	Likely Source of Contamination
Haloacetic Acids (five)		1		1			
(HAA5) (ppb) Seminale Countr	(7/22		9.91	991	N/A	MCI - 60	Bu moduct of drinking uptor disinfaction
Sunshine Water Services	07/23 08/23	N	20.19	8.46 - 20.19	N/A	MCL = 60	By-product of drinking water disinfection
Total Trihalomethanes							
(TTHM) (ppb)	an/11		24.91	24.91		MCL = 80	Prograduate of this bigs up to a disinfection
Seminole County Sunthine Water Services	07/23 08/23	N	24.91	19.28 - 26.47	N/A	MILL = 80	By-product of drinking water disinfection
				Lead and Copper (T	ap Water)		
	Date of			Number of			
Contaminant and Unit of Measurement	Sampling (mo/yr)	AL Violation Y/N	90th Percentile Result	sampling sites exceeding the AL	MCLG	AL	Likely Source of Contamination
opper (tap water) (ppm)	06/21	N	0.082	0	1.3	1.3	Corrosion of household plumbing systems; erosion of
Seminale County		0.00	The Fifth Linces	ulated Contaminant	Monitoring Ri	de (UCMB5)	natural deposits; leaching from wood preservatives
Sunshine Water Services I ou	r wholesale water	provide r) con tinue	s efforts to conduct st	tetewide drinking water	testine for Per-	and Polyluoroal	kyl Substances (IFAS). These man-made compounds are used in t
menufecturing of products re	sistent to water, p	rease or stains inclu	ding firefighting foem	is, deaners, cosmetics, p	ein ta, adheraivera i	and insectiones.	PFAS can migrate into the soil, water, and air and is likely preser
public health by proposing a	mas all over the National Primary I	world. The Environr Drinking Weter Heig	nental Protection Age alation (NPDWR) to e	rncy (EPA) has establishe stablish legally enforceab	d Health Advisor le levels, called	ry Levels (HALs) f Maximum Conta	or GenX, PFBS, PFCA, and PFCS. BPA is taking a key step to prote minant Laweb (MCLs), for six PPAS known to occur in drinking wa
			anticipates finalizing	the rule in 2024. If you w	ould like more	information on t	he EPA's Unregulated Contaminants Monitoring Rule (UCMR), pi
	Date of		call the S	afe Drinking Water Hotli	ne at (800) 42.6-	4751.	
Contaminant	Sampling (mo/yr)	Range of Detect	Average Level	EPA HAL			
PFBS (ng/L)	11/21/23, 12/19/23 11/21/23,	ND -1.3	0.33	2,000			
PFHpA (ng/L)	12/19/23	ND-0.97	0.07	5			
PFHxA (ng/L)	11/21/23, 12/19/23	ND-1.9	0.5				
PFHxS (ng/L)	11/21/23, 12/19/23	ND-2.1	0.7				
PFDA (ng/L)	11/21/23, 12/19/23 11/21/23,	ND-2.9	0.81	0.004			
PFOS (ng/L)	12/19/23	ND-2.7	0.78	0.02			
PFPeA (ng/L)	11/22	ND-2.2	0.2				
erms and Abbreviations: lealth Advisory Level (HA) - To provide A	mericans includi	ng the most consist	ve populations with	a margin of per	otection from a	lifetime of exposure to GenX, PFOA and PFOS from drini
water, EPA established he							
						inute in 2,000,0	00 years, ora single penny in \$10,000,000,000.
ND (No Detect) - No detec SenX - Hexafluoropropyle			detectable at the i	minimum reporting li	mit.		
aenx - Hexatiuoropropyle PFBS - Perfluorobutanesul		ALIG (HIPO-DA)					
PFOS – Perfluorooctanesul	fonic Acid						
FOA - Perfluorooctanoic	1000 a						
PFHpA– Perfluoroheptano PFHxA – Perfluorohexanoi							
······································							
PFHxS – Perfluorohexanes	ulfonic Acid						

*PFHxS – Perfluorohexanesultonic Acid *PFPeA – Perfluoropentanoic Acid

Drinking Water Quality Report-Northeast Service Area 2023

We are pleased to present you this year's Annual Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. The Floridan Aquifer is the water source for the Northeast Service Area (PWS #3590473) which is obtained from ground water wells. The water is treated with ozone, filtered with granular activated carbon, and is chlorinated for disinfection purposes. We then fluoridate for dental health purposes. If you have any questions about this report or concerning your water utility, please contact Seminole County Utilities Department at 407-665-2110.

Seminole County Utilities Department routinely monitors for contaminants in your drinking water according to Federal and State laws, rules, and regulations. Except where indicated otherwise, this

report is based on the results of our monitoring for the period of January 1 to December 31, 2023. Data obtained before January 1, 2023 and presented in this report are from the most recent testing done in accordance with the laws, rules, and regulations.

Source Water Assessment Plan

In 2023, the Department of Environmental Protection performed a Source Water Assessment on our system. The assessment was conducted to provide information about any potential sources of contamination in the vicinity of our wells. There are one (1) potential sources of contamination identified for this system with a low susceptibility level. The assessment results are available on the FDEP Source Water Assessment and Protection Program website at www.dep.state.fl.us/swapp.

EPA Would Like You to Know

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- (A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- (B) *Inorganic contaminants,* such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- (C) *Pesticides and herbicides,* which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- (D) *Organic chemical contaminants,* including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
- (E) Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the EPA prescribes regulations, which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/ AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Seminole County Utilities Department is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Terms and Abbreviations

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

"ND" means not detected and indicates that the substance was not found by laboratory analysis.

Parts per billion (ppb) or Micrograms per liter (μg/l): one part by weight of analyte to 1 billion parts by weight of the water sample. **Parts per million (ppm) or Milligrams per liter (mg/l):** one part by weight of analyte to 1 million parts by weight of the water sample. **Picocurie per liter (pCi/L):** measure of the radioactivity in water.

Sodium (ppm)

02/23

Northeast Service Area WATER QUALITY RESULTS

Northeast Water System - PWS ID# 3590473

				Inorganic Conta	minants					
Results in the Level Detected column for inorganic contaminants are the highest average at any of the sampling points or the highest detected level at any sampling point, depending on the sampling frequency.										
Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	MCL Violation Y/N	Level Detected	Range of Results	MCLG	MCL	Likely Source of Contamination			
Barium (ppm)	02/23	N	0.0076	0.0076	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits			
Fluoride (ppm)	02/23	N	0.74	0.74	4	4	Erosion of natural deposits; discharge from fertilizer and aluminum factories. Water additive which promotes strong teeth when at the optimum level of 0.7 ppm			
Nitrate (as Nitrogen) (ppm)	02/23	N	0.20	0.20	10	10	Runoff from fer tilizer use; leaching from septic tanks, sewage; erosion of natural deposits			

Stage 1 Disinfectants/Disinfection By-Products

N/A

160

Salt water intrusion, leaching from soil

8.50

8.50

For chlorine, the level detected is the highest running annual average (RAA), computed quarterly, of monthly averages of all samples collected. The range of results is the range of results of all individual samples collect ed during the past year.

Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	MCL Violation Y/N	Level Detected	Range of Results	MCLG or MRDLG	MCL or MRDL	Likely Source of Contamination				
Chlorine (ppm)	01/23-12/23	N	1.14	0.52 - 1.58	MRDLG=4	MRDL=4	Water additive used to control microbes				
Stage 2 Disinfectants/Disinfection By-Products											
For Haloacetic Acids (HAA5) or	For Haloacetic Acids (HAAS) or Total Trihalome thanes (TTHM), the level detected is the highest detected level at any sampling point. Range of Results is the range of individual sample results (lowest to highest) for all monitoring locations.										
Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	MCL Violation Y/N	Level Detected	Range of Results	MCLG or MRDLG	MCL or MRDL	Likely Source of Contamination				
Haloacetic Acids (HAA5) (ppb)	11/2023	N	14.30	11.84 - 14.30	NA	MCL=60	By-product of drinking water disinfection				
Total Trihalomethanes (TTHM) (ppb)	11/2023	N	33.98	26.31 - 33.98	NA	MCL=80	By-product of drinking water disinfection				
				Lead and Copper (Tap Water)						
Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	ALViolation Y/N	90th Percentile Result	Number of sampling sites exceeding the AL	MCLG	AL	Likely Source of Contamination				
Copper (tap water) (ppm)	06/23-07/23	N	0.19	0	13	13	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives				

Drinking Water Quality Report-Northwest Service Area 2023

We are pleased to present you this year's Annual Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. The Floridan Aquifer is the water source for the Northwest Service Area (PWS #3594107) which is obtained from ground water wells. The water is treated with ion exchange, and ozone. It is chlorinated for disinfection purposes and then fluoridated for dental health purposes. If you have any questions about this report or concerning your water utility, please contact Seminole County Utilities Department at 407-665-2110.

Seminole County Utilities Department routinely monitors for contaminants in your drinking water according to Federal and State laws, rules, and regulations. Except where indicated otherwise, this report is based on the results of our monitoring for the period of January 1 to December 31, 2023.

Data obtained before January 1, 2023 and presented in this report are from the most recent testing done in accordance with the laws, rules, and regulations.

Source Water Assessment Plan

In 2023, the Department of Environmental Protection performed a Source Water Assessment on our system. The assessment was conducted to provide information about any potential sources of contamination in the vicinity of our wells. There are nine (9) potential sources of contamination identified for this system from low to moderate susceptibility levels. The assessment results are available on the FDEP Source Water Assessment and Protection Program website at www.dep.state.fl.us/swapp.

EPA Would Like You to Know

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include

- (A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- (B) *Inorganic contaminants,* such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- (C) *Pesticides and herbicides,* which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- (D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
- (E) Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the EPA prescribes regulations, which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Back to

Service Area Map

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/ AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Seminole County Utilities Department is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Terms and Abbreviations

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

"ND" means not detected and indicates that the substance was not found by laboratory analysis.

Parts per billion (ppb) or Micrograms per liter (μg/l): one part by weight of analyte to 1 billion parts by weight of the water sample. **Parts per million (ppm) or Milligrams per liter (mg/l):** one part by weight of analyte to 1 million parts by weight of the water sample. **Picocurie per liter (pCi/L):** measure of the radioactivity in water.

	N	lort	h w e	st So	e r v i	ice	Area				
		WA	TER Q	UALIT	YR	ESUL	LTS				
				ter System							
				Radioactive Con							
Results in the Level Detected	column for radioacti	ve con taminants a	re the highest avera	ge at any of the samp	oling points or th	ne highest dete	cted level at any sampling point, depending on the sampling frequency.				
Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	MCLViolation Y/N	Level Detected	Range of Results	MCLG	MCL	Likely Source of Contamination				
Radium 226 + 228 or combined radium (pCi/L)	2/23	N	3	1.2 - 1.8	0	5	Erosion of natural deposits				
8		2	87 - 3 	Inorganic Conta	aminants						
Results in the Level Detected column for inorganic contaminants are the highest average at any of the sampling points or the highest detected level at any sampling point, depending on the sampling frequency.											
Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	MCL Violation Y/N	Level Detected	Range of Results	MCLG	MCL	Likely Source of Contamination				
Barium (ppm)	02/23	N	0.011	0.011	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits				
Fluoride (ppm)	02/23	N	0.81	0.81	4	4	Erosion of natural deposits; discharge from fertilizer and aluminum factories. Water additive which promotes strong teeth when at the optimum level of 0.7 ppm				
Nitrate (as Nitrogen) (ppm)	02/23	N	0.079	0.079	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage erosion of natural deposits				
Sodium (ppm)	02/23	N	44.0	44.0	N/A	160	Salt water intrusion, leaching from soil				
			Stage 1 D	isinfectants/Disir	nfection By-P	roducts					
For chlorine, the level detec	ted is the highest rur	nn ing ann ual avera	ge (RAA), computed	quarterly, of month) collected during th		samples colle d	ted. The range of results is the range of results of all individual samples				
Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	MCL Violation Y/N	Level Detected	Range of Results	MCLG or MRDLG	MCL or MRDL	Likely Source of Contamination				
Chlorine (ppm)	01/23-12/23	N	1.50	0.36 - 1.89	MRDLG = 4	MRDL = 4.0	Water additive used to control microbes				
			Stage 2 D	i sin fectants/ Dis ir	nfection By-P	roducts					
For Haloacetik Adds (HAA5) or	Total Trihalomethan	es (TTHM), the leve	el detected is the hi	ghest detecte d level a monitoring loc		point. Range of	Results is the range of individual sample results (lowest to highest) for				
** For Haloacetic Acids (HAAS) o	r Total Trihalometh a	nes (TTHM), the lev	vel de tecte d is the h		ning annu al aver	age (LRAA). Rar	nge of Results is the range of individaul samples results (bowest to highe				
Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	MCL Violation Y/N	Level Detected	Range of Results	MCLG or MRDLG	MCL or MRDL	Likely Source of Contamination				
Haloacetic Acids (HAA5) (ppb)	01/23-12/23	N	25.62*	5.25 - 25.65	N/A	MCL=60	By-product of drinking water disinfection				
Total Trihalomethanes (TTHM) (ppb)	01/23-12/23	Y	86.95**	31.93 - 87.69	N/A	MCL=80	By-product of drinking water disinfection				
The system incurred MCL viola							MCL of 80 ppb. LRAA results are shown in the table below. Some people ntrai nervoussystems, and may have an increased risk of getting cancer.				
							itra nervoussystems, and may nave an increased risk of getting cancer. Ich in turn reduces the formation of TTHM's.				
TTHM Monitoring Re	sults (ppb)	1st Quarter 2023	2nd Quanter 2023	3rd Quarter 2023	4th Qu 202						
NW - 56 1799 Astor Quarterly Resu	9 T 영 전성 방법	83.73	48.48	36.65	31.	93					
NW - 56 1799 Astor LRAA	Famrs Pl	85.54	83.02	65.74	50.3	20	Reported LRAA for quarters 1-3 are based on results from previous quarters not reported on this table.				
NW - 79 - 4965 5 Quarterly Resu	88830	87.69	75.21	60.14	563	28					
NW - 79 - 4965 S LRAA	5R 46	83.83	86.95	80.64	69.	83					
and R.			l	ead and Copper (Tap Water)						
Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	AL Violation Y/N	90th Percentile Result	Number of sampling sites exceeding the AL	MCLG	AL	Likely Source of Contamination				
Copper (tap water) (ppm)	06/2023	N	0.56	0	1.3	1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives				

Drinking Water Quality Report-Southeast Service Area 2023

We are pleased to present you this year's Annual Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. The Floridan Aquifer is the water source for the Southeast Service Area (PWS #3590571) which is obtained from ground water wells. The water is ozonated, aerated, filtered with granular activated carbon, chlorinated for disinfection, the pH is adjusted for corrosion control, then fluoridate for dental health purposes. If you have any questions about this report or concerning your water utility, please contact Seminole County Utilities Department at 407-665-2110.

Seminole County Utilities Department routinely monitors for contaminants in your drinking water

according to Federal and State laws, rules, and regulations. Except where indicated otherwise, this report is based on the results of our monitoring for the period of January 1 to December 31, 2023. Data obtained before January 1, 2023 and presented in this report are from the most recent testing done in accordance with the laws, rules, and regulations.

Source Water Assessment Plan

In 2023, the Department of Environmental Protection performed a Source Water Assessment on our system. The assessment was conducted to provide information about any potential sources of contamination in the vicinity of our wells. There are two (2) potential sources of contamination identified for this system with low susceptibility levels. The assessment results are available on the FDEP Source Water Assessment and Protection Program website at <u>www.dep.state.fl.us/swapp.</u>

EPA Would Like You to Know

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- (A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- (B) *Inorganic contaminants,* such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- (C) *Pesticides and herbicides,* which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- (D) *Organic chemical contaminants,* including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
- (E) Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the EPA prescribes regulations, which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/ AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Seminole County Utilities Department is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Terms and Abbreviations

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

"ND" means not detected and indicates that the substance was not found by laboratory analysis.

Parts per billion (ppb) or Micrograms per liter (μg/l): one part by weight of analyte to 1 billion parts by weight of the water sample. **Parts per million (ppm) or Milligrams per liter (mg/l):** one part by weight of analyte to 1 million parts by weight of the water sample. **Picocurie per liter (pCi/L):** measure of the radioactivity in water.

Southeast Service Area WATER QUALITY RESULTS

Southeast Water System - PWS ID# 3590571

Water Quality Testing Results Table

Inorganic Contaminants

Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	MCL Violation Y/N	Level Detected	Range of Results	MCLG	MCL	Likely Source of Contamination
Barium (ppm)	02/23	N	0.01	0.01	2	2	Discharge of drilling wastes; discharge from metal refinerio erosion of natural deposits
Fluoride (ppm)	02/23	N	0.69	0.67 - 0.69	4	4	Erosion of natural deposits; discharge from fertilizer and aluminum factories. Water additive which promotes stro teeth when at the optimum level of 0.7 ppm
litrate (as Nitrogen) (ppm)	02/23	N	0.33	0.074 - 0.33	10	10	Runoff from fertilizer use; leaching from septic tanks, sewa erosion of natural deposits
Sodium (ppm)	02/23	N	13.0	10.0 - 13.0	NA	160	Salt water intrusion, leaching from soil
			Stag	ge 1 Disinfectants	/Disinfection	By-Products	
or bromate, chloramines, or ch	lorine, the level de	etected is the h		nual average (RAA), co individual samples col			of all samples collected. The range of results is the range of results
Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	MCL Violation Y/N	Level Detected	Range of Results	MCLG or MRDLG	MCL or MRDL	Likely Source of Contamination
Chlorine (ppm)	01/23 - 12/23	N	1.26	0.23 - 2.26	MRDLG = 4	MRDL = 4.0	Water additive used to control microbes
			Stag	ge 2 Disinfectants	/Disinfection	By-Products	
For Haloacetic Acids (HAAS) or	Total Trihalometh	anes (TTHM), t	he level detected i		al running annua itoring locations.		e of Results is the range of individual samples results (lowest to hig
Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	MCL Violation Y/N	Level Detected	Range of Results	MCLG or MRDLG	MCL or MRDL	Likely Source of Contamination
Haloacetic Acids (HAA5) (ppb)	01/23 - 12/23	N	26.74*	15.53 - 33.80	NA	MCL = 60	By-product of drinking water disinfection
Total Trihalomethanes (TTHM) (ppb)	01/23 - 12/23	N	48.97*	30.85 - 64.46	NA	MCL = 80	By-product of drinking water disinfection
				Lead and Co	pper (Tap Wa	ter)	
Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	AL Violation Y/N	90th Percentile Result	Number of sampling sites exceeding the AL	MCLG	AL	Likely Source of Contamination
Copper (tap water) (ppm)	06/2023	N	0.19	0	1.3	1.3	Corrosion of household plumbing systems; erosion of nat deposits; leaching from wood preservatives
		2	2	8		15	Corrosion of household plumbing systems; erosion of nat

Drinking Water Quality Report-Southwest Service Area 2023

We are pleased to present you this year's Annual Water Quality Report. This report is designed to inform you about the ¬¬quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. The Floridan Aquifer is the water source for the Southwest Service Area (PWS #3590785) which is obtained from ground water wells and is aerated, chlorinated for disinfection, and then fluoridated for dental health purposes. If you have any questions about this report or concerning your water utility, please contact Seminole County Utilities Department at 407-665-2110.

Seminole County Utilities Department routinely monitors for contaminants in your drinking water according to Federal and State laws, rules, and regulations. Except where indicated otherwise, this report is based on the results of our monitoring for the period of January 1 to December 31, 2023.

Data obtained before January 1, 2023 and presented in this report are from the most recent testing done in accordance with the laws, rules, and regulations.

Source Water Assessment Plan

In 2023, the Department of Environmental Protection performed a Source Water Assessment on our system. The assessment was conducted to provide information about any potential sources of contamination in the vicinity of our wells. There are two (2) potential sources of contamination identified for this system with low susceptibility levels. The assessment results are available on the FDEP Source Water Assessment and Protection Program website at <u>www.dep.state.fl.us/swapp.</u>

EPA Would Like You to Know

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- (A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- (B) *Inorganic contaminants,* such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- (C) *Pesticides and herbicides,* which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- (D) *Organic chemical contaminants,* including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
- (E) Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the EPA prescribes regulations, which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/ AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Seminole County Utilities Department is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Terms and Abbreviations

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

"ND" means not detected and indicates that the substance was not found by laboratory analysis.

Parts per billion (ppb) or Micrograms per liter (μg/l): one part by weight of analyte to 1 billion parts by weight of the water sample. **Parts per million (ppm) or Milligrams per liter (mg/l):** one part by weight of analyte to 1 million parts by weight of the water sample. **Picocurie per liter (pCi/L):** measure of the radioactivity in water.

Southwest Service Area WATER QUALITY RESULTS

Southwest Water System - PWS ID# 3590785

				Inorganic Cont	aminants		
Results in the Level Detected	column for inorganic	motaminants		×		mintsor the	highest detected level at any sampling point, depending on th
	containing for more game.		are the lights	sampling freq		points of the	inglicat detected interaction and pairs according on a
Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	MCL Violation Y/N	Level Detected	Range of Results	MCLG	MCL	Likely Source of Contamination
Barium (ppm)	02/23	N	0.0096	0.0096	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Fluoride (ppm)	02/23	N	0.87	0.87	4	4	Erosion of natural deposits; discharge from fertilizer a aluminum factories. Water additive which promote strong teeth when at the optimum level of 0.7 ppm
Vitrate (as Nitrogen) (ppm)	02/23	N	0.067	0.067	10	10	Runoff from fertilizer use; leaching from septic tanks sewage; erosion of natural deposits
Sodium (ppm)	02/23	N	10	10	N/A	160	Salt water intrusion, leaching from soil
			Stage 1 Disi	nfectants/Disir	nfection By	-Products	
For chlorine, the level detected	d is the highest runnin		- T	· · ·			amples collected. The range of results is the range of results o
	J			samples collected			
Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	MCL Violation Y/N	Level Detected	Range of Results	MCLG or MRDLG	MCL or MRDL	Likely Source of Contamination
Chlorine (ppm)	01/23 - 12/23	N	1.58	0.76 - 2.14	MRDLG = 4	MRDL = 4.0	Water additive used to control microbes
			Stage 2 Dis	infectant/Disir	nfection By	-Products	
For Haloacetic Acids (HAA5) or	Total Trihalomethane	es (TTHM), the		d is the highest det to highest) for all n			; point. Range of Results is the range of individual sample resul
Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	MCL Violation Y/N	Level Detected	Range of Results	MCLG or MRDLG	MCL or MRDL	Likely Source of Contamination
Haloacetic Acids (HAA5) (ppb)	01/23	N	14.93	12.23 • 14.93	N/A	MCL = 60	By-product of drinking water disinfection
Total Trihalomethanes (TTHM) (ppb)	01/23	N	30.34	25.31 - 30.34	N/A	MCL = 80	By-product of drinking water disinfection
			Lea	d and Copper	(Tap Water	•)	
Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	AL Violation Y/N	90th Percentile Result	Numberof sampling sites exceeding the AL	MCLG	AL	Likely Source of Contamination
Copper (tap water) (ppm)	07/2023	N	0.28	0	1.3	1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

Purpose : To collect occurrence data for contaminants suspected to be present in drinking water but that do not have health-based standards set under the Safe Drinking Water Act (SDWA). Southwest Water Treatment Plant has been monitoring these unregulated contaminants as part of a study to help the US Environmental Protection Agency determine whether or not these contaminants need to be regulated. The UCMR program is the primary source of drinking water contaminant occurence data used by EPA in regulatory determinations. If you would like more information on the EPA's Unregulated Contaminants Monitoring Rule, please call the Safe Drinking Water Hotline at (800) 426-4791

n 2023 Seminole County Utilities Department sampled for a series of unregulated contaminants, including 29 PFAS compounds (per- and polyfluoroalkyl substances) and one metal, Lithium perEPA's UCMR5 requirement. Sample results showed no detectable quantities for any of the 29 PFAS compounds or Lithium. You have a right to know this data is available. Unregulated contaminants do not yet have a drinking water standard. This monitoring will help determine whether the contaminants should require on-going testing and establish allowable maximum contaminant limits. If you wish to learn more of the sample results, visit our website at:

https://www.seminolecountyfl.gov/departments-services/utilities/water/

Drinking Water Quality Report-Sun Shadows Consecutive Service Area 2023

We are pleased to present you this year's Annual Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. The Floridan Aquifer is the water source for the Sun Shadows Consecutive Service Area (PWS #3594216) which is obtained from ground water wells which are aerated to remove hydrogen sulfide, filtered with granular activated carbon, chlorinated for disinfection, and orthopolyphosphate is added for corrosion control. If you have any questions about this report or concerning your water utility, please contact Seminole County Utilities Department at 407-665-2110.

Seminole County Utilities Department routinely monitors for contaminants in your drinking water according to Federal and State laws, rules, and regulations. Except where indicated otherwise, this report

is based on the results of our monitoring for the period of January 1 to December 31, 2023. Data obtained before January 1, 2023 and presented in this report are from the most recent testing done in accordance with the laws, rules, and regulations.

Source Water Assessment Plan

In 2023, the Department of Environmental Protection performed a Source Water Assessment on City of Casselberry, PWS #3590159, from whom we purchase your drinking water. The assessment was conducted to provide information about any potential sources of contamination in the vicinity of their wells. There are nine (9) potential sources of contamination identified for this system with low susceptibility levels. The assessment results are available on the FDEP Source Water Assessment and Protection Program website at www.dep.state.fl.us/swapp.

EPA Would Like You to Know

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- (A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- (B) *Inorganic contaminants,* such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- (C) *Pesticides and herbicides,* which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- (D) *Organic chemical contaminants,* including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
- (E) *Radioactive contaminants,* which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the EPA prescribes regulations, which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/ AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Seminole County Utilities Department is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Terms and Abbreviations

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

"ND" means not detected and indicates that the substance was not found by laboratory analysis.

Parts per billion (ppb) or Micrograms per liter (μg/l): one part by weight of analyte to 1 billion parts by weight of the water sample. **Parts per million (ppm) or Milligrams per liter (mg/l):** one part by weight of analyte to 1 million parts by weight of the water sample. **Picocurie per liter (pCi/L):** measure of the radioactivity in water.

Sunshadows Service Area WATER QUALITY RESULTS

Sun Shadows Consecutive Water System - PWS ID# 3594216

Inorganic Contaminants

Results in the Level Deter							
	ted column for inc	organic contamin	ants are the highest ave	erage at any of the samp	ing points or the	e highest detecter	I level at any sampling point, depending on the sampling frequency.
Barium (ppm) City of Casselberry	06/23	N	0.016	0.0087 -0.016	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Fluoride (ppm) City of Casselberry	06/23	N	0.19	0.18 - 0.19	4	4	Erosion of natural deposits; discharge from fertilizer and aluminu factories. Water additive which promotes strong teeth when a optimum level of 0.7 ppm
Nitrate (as Nitrogen)(ppm) City of Casselberry	01/23 - 06/23	N	0.21	0.073 - 0.21	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Sodium (ppm) City of Casse lberry	06/23	N	14.0	9.80 - 14.0	N/A	160	Salt water intrusion, leaching from soil
			Stage 1	L Disinfectants/Disi	fection By-P	roducts	
For chlorine, the level detected	d is the highest run	nning ann ual ave	age (RAA), computed o	quarterly, of monthly ave during the pa		les collected. The	range of results is the range of results of all individual samples collecte
Contaminant and Unit of Measurement	Date of Sampling (mo/yr)	MCL Violation Y/N	Level Detected	Range of Results	MCLG or MRDLG	MCL or MRDL	Likely Source of Contamination
Chlorine (ppm) Seminole County City of Casselberry	01/23 - 12/23 01/23 - 12/23	N N	1.62 1.83	0.39 - 1.74 0.33 - 3.29	MRDLG = 4	MRDL = 4.0	Water additive used to control microbes
			Stage 2	2 Disinfectants/Disi	nfection By-P	roducts	
* For Haloaœtic Acids (HAA5)	or Total Trihalom	ethanes (TTHM),	the level detected is th		at any sampling p	point. Range of R	esults is the range of individual sample results (lowest to highest) for all
* For Haloacetic Acids (HAA5)							
	or Total Trihalome	thanes (TTHM), 1	he level detected is the	monitoring loo highest locational runni all monitoring lo	ng annual avera	e (LRAA). Range	of Results is the range of individaul samples results (lowest to highest)
Contaminant and Unit of Measurement	or Total Trihalome Date of Sampling (mo/yr)	thanes (TTHM), 1 MCL Violation Y/N	he level detected is the Level Detected	highest locational runni	ng annual avera	ge (LRAA). Range MCL or MRDL	of Results is the range of individaul samples results (lowest to highest) Likely Source of Contamination
	Date of Sampling	MCL	_	e highest locational runni all monitoring lo	ng annual avera ocations. MCLG or		
Measurement Haloacetic Acids (five) (HAA5) (ppb) Seminole County	Date of Sampling (mo/yr) 08/23	MCL Violation Y/N	Level Detected	e highest locational runni all monitoring la Range of Results 23.56 - 25.2	ng annual avera ocations. MCLG or MRDLG	MCL or MRDL	
Measurement Haloacetic Acids (five) (HAA5) (ppb) Seminole County City of Casselberry Total Trihalomethanes (TTHM) (ppb Seminole County	Date of Sampling (mo/yr) 08/23 01/23 - 12/23 08/23	MCL Violation Y/N N N	Level Detected 25.2* 29.0** 51.00*	e highest locational runni all monitoring la Range of Results 23.56 - 25.2 18.14 - 32.98 43.15 - 51.00	ng annual avera ocations. MCLG or MRDLG NA	MCL or MRDL MCL = 60	Likely Source of Contamination By-product of drinking water disinfection
Measurement Haloacetic Acids (five) (HAA5) (ppb) Seminole County City of Casselberry Total Trihalomethanes (TTHM) (ppb Seminole County	Date of Sampling (mo/yr) 08/23 01/23 - 12/23 08/23	MCL Violation Y/N N N	Level Detected 25.2* 29.0** 51.00*	e highest locational runni all monitoring la Range of Results 23.56 - 25.2 18.14 - 32.98 43.15 - 51.00 29.89 - 76.83	ng annual avera ocations. MCLG or MRDLG NA	MCL or MRDL MCL = 60	Likely Source of Contamination By-product of drinking water disinfection